J. Patrick Megonigal

Learn More
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing(More)
For decades, ecosystem scientists have used global warming potentials (GWPs) to compare the radiative forcing of various greenhouse gases to determine if ecosystems have a net warming or cooling effect on climate. On a conceptual basis, the continued use of GWPs by the ecological community may be untenable because the use of GWPs requires the implicit(More)
Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands(More)
Terrestrial ecosystems gain carbon through photosynthesis and lose it mostly in the form of carbon dioxide (CO(2)). The extent to which the biosphere can act as a buffer against rising atmospheric CO(2) concentration in global climate change projections remains uncertain at the present stage. Biogeochemical theory predicts that soil nitrogen (N) scarcity(More)
North American wetlands have been invaded by an introduced lineage of the common reed, Phragmites australis. Native lineages occur in North America, but many populations have been extirpated by the introduced conspecific lineage. Little is known about how subtle changes in plant lineage may affect methane (CH4) emissions. Native and introduced Phragmites(More)
The role of tidal marshes as a source of dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) for adjacent estuarine waters was studied in the Rhode River subestuary of the Chesapeake Bay. Water in a tidal creek draining brackish, high-elevation marshes was sampled every hour during several semidiurnal tidal cycles in order to examine(More)
Rising atmospheric CO 2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated CO 2 and(More)
Rising atmospheric carbon dioxide (CO₂) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO₂. We used open-top chambers to manipulate CO₂ during regrowth after fire, and measured C, N and tracer(More)
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here(More)