Learn More
A single protein crystal structure contains information about dynamic properties of the protein as well as providing a static view of one three-dimensional conformation. This additional information is to be found in the distribution of observed electron density about the mean position of each atom. It is general practice to account for this by refining a(More)
Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr. The TLSMD web server extracts information about dynamic properties of a protein based on(More)
Protein motion is often the link between structure and function and a substantial fraction of proteins move through a domain hinge bending mechanism. Predicting the location of the hinge from a single structure is thus a logical first step towards predicting motion. Here, we describe ways to predict the hinge location by grouping residues with correlated(More)
TLS (translation/libration/screw) models describe rigid-body vibrational motions of arbitrary objects. A single-group TLS model can be used to approximate the vibration of an entire protein molecule within a crystal lattice. More complex TLS models are broadly applicable to describing inter-domain and other internal vibrational modes of proteins. Such(More)
  • 1