N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological… (More)
The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a co-agonist like… (More)
Proceedings of the National Academy of Sciences…
2000
Functional activity of N-methyl-D-aspartate (NMDA) receptors requires both glutamate binding and the binding of an endogenous coagonist that has been presumed to be glycine, although D-serine is a… (More)
Proceedings of the National Academy of Sciences…
2005
The gliotransmitter D-serine is released upon (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are… (More)
Proceedings of the National Academy of Sciences…
1999
High levels of D-serine occur in mammalian brain, where it appears to be an endogenous ligand of the glycine site of N-methyl-D-aspartate receptors. In glial cultures of rat cerebral cortex, D-serine… (More)
Human genes coding for pLG72 and d-amino acid oxidase have recently been linked to the onset of schizophrenia. pLG72 was proposed as an activator of the human FAD-containing flavoprotein d-amino acid… (More)
Neurons and glia talk to each other at synapses. Glia sense the level of synaptic activity and consequently regulate its efficacy via the release of neuromodulators. One such glia-derived modulator… (More)
Glial cells are increasingly recognized as active players that profoundly influence neuronal synaptic transmission by specialized signaling pathways. In particular, astrocytes have been shown… (More)
N-methyl-D-aspartate receptors (NMDARs) subserve numerous neurophysiological and neuropathological processes in the cerebral cortex. Their activation requires the binding of glutamate and also of a… (More)
D-Serine is an astrocyte-derived regulator for N-methyl-D-aspartate receptors, but the intracellular routes of its trafficking are still largely unknown. Here, we combined confocal microscopy with… (More)