J P Berteau

Learn More
In Adolescent Idiopathic Scoliosis (AIS), numerical models can enhance orthopaedic or surgical treatments and provide reliable insights into the mechanism of progression. Computational methods require knowledge of relevant parameters, such as the specific geometrical or material properties of the AIS rib, about which there is currently a lack of(More)
BACKGROUND CONTEXT Adolescent idiopathic scoliosis (AIS) causes a spine and rib cage three-dimensional (3D) deformity previously treated by bracing. Whatever the manufacturing process, this rigid system acts biomechanically on the patient through the "three-point bending" mechanical principle. It applies corrective forces to a limited area and acts(More)
The assessment of elastic properties in children's cortical bone is a major challenge for biomechanical engineering community, more widely for health care professionals. Even with classical clinical modalities such as X-ray tomography, MRI, and/or echography, inappropriate diagnosis can result from the lack of reference values for children bone. This study(More)
Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Understanding the changes in mechanical tissues properties during growth is a critical step in advancing strategies for orthopedics and for cell- and biomaterial- based therapies dedicated to cartilage repair. We(More)
BACKGROUND Lumbar facet joints have been cited as a possible origin of low-back pain. A relationship between disc height decrease and facet joint degeneration has been reported. Facet joint degeneration may also be triggered by nucleotomy, performed on prolapsed discs, which might change the natural load sharing between the anterior and posterior structures(More)
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views(More)
As a determinant of skeletal fragility, the organic matrix is responsible for the post-yield and creep behavior of bone and for its toughness, while the mineral apatite acts on stiffness. Specific to the fibula and ulna in children, greenstick fractures show a plastic in vivo mechanical behavior before bone fracture. During growth, the immature form of(More)