Learn More
The dominant effect of transcription factors in imparting expanded potency is best exemplified by the reprogramming of fibroblasts to pluripotent cells using retrovirus-mediated transduction of defined transcription factors. In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that(More)
Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst. Despite sharing the common property of pluripotency, hESCs are notably distinct from epiblast cells of the preimplantation blastocyst. Here we use a combination of three small-molecule inhibitors to sustain hESCs in a LIF signaling-dependent hESC state (3iL hESCs)(More)
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) with the introduction of Oct4, Sox2, Klf4, and c-Myc. Among these four factors, Oct4 is critical in inducing pluripotency because no transcription factor can substitute for Oct4, whereas Sox2, Klf4, and c-Myc can be replaced by other factors. Here we show that the orphan nuclear(More)
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) can be achieved by viral-mediated transduction of defined transcription factors. Moving toward the eventual goal of clinical application, it is necessary to overcome limitations such as low reprogramming efficiency and genomic alterations due to viral integration. Here, we review(More)
The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between(More)
Embryonic stem cell (ESC) pluripotency depends on a well-characterized gene regulatory network centered on Oct4, Sox2, and Nanog. In contrast, little is known about the identity of the key coregulators and the mechanisms by which they may potentiate transcription in ESCs. Alongside core transcription factors, the orphan nuclear receptor Esrrb(More)
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression(More)
There has been an immense interest in embryonic stem cells owing to their pluripotent property, which refers to the ability to differentiate into all cell types of an embryo. In the maintenance of this pluripotent nature, transcription factors play essential roles, and signalling pathways also act to sustain the undifferentiated state. Recent studies have(More)
Embryonic stem cells (ESCs) are characterized by their broad developmental potential and the capacity to self-renew. The advent of high-throughput technologies has facilitated genome-wide studies of transcriptional network, resulting in an ever-increasing repertoire of transcription factors implicated in the maintenance of the embryonic stem cell state.(More)
A new study shows that somatic cell reprogramming is accompanied by changes in the expression of large intergenic non-coding RNAs (lincRNAs). Some of these reprogramming-induced lincRNAs are directly targeted by key pluripotency factors and regulate reprogramming, implicating lincRNAs in the reinstatement and maintenance of pluripotency.