J. N. D. Whittle

Learn More
The interaction of heparan sulfate (HS) with specific proteins facilitates a wide range of fundamental biological processes including cellular proliferation and differentiation, tissue homeostasis, and viral pathogenesis. This multiplicity of function arises through sequence diversity within the HS chain. Heparin, which is very similar in structure to the(More)
The interactions of glycosaminoglycans (GAGs) with proteins underlie a wide range of important biological processes. However, the study of such binding reactions has been hampered by the lack of a simple frontline analysis technique. Previously, we have reported that cold plasma polymerization can be used to coat microtiter plate surfaces with allyl amine(More)
As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological,(More)
Glycosaminoglycans play an important role in tissue organisation through interactions with a diverse range of proteins, growth factors and other chemokines. In this report, we demonstrate the GAG-binding 'fingerprint' of two important GAG-binding proteins - osteoprotogerin and TIMP-3. The technique uses a straightforward method for attaching GAGs to assay(More)
Plasma polymerisation is a technologically important surface engineering process capable of depositing ultra-thin functionalised films for a variety of purposes. It has many advantages over other surface engineering processes, including that it is completely dry, can be used for complex geometries, and the physico-chemical properties of the film can be(More)
External parameters (RF power and precursor flow rate) are typically quoted to define plasma polymerization experiments. Utilizing a parallel-plate electrode reactor with variable geometry, it is shown that these parameters cannot be transferred to reactors with different geometries in order to reproduce plasma polymer films using four precursors.(More)
We describe a method to produce antibody-captured ligand gradients over biologically relevant distances (hundreds of micrometers) whereby the ligand density and gradient shape may be tailored. Separation of the ligand from the solid-phase surface ensures that the biological activity of the ligand remains unaffected by immobilization. Our method involves the(More)
It has been shown that both ions and neutral species may contribute to plasma polymer growth. However, the relative contribution from these mechanisms remains unclear. We present data elucidating the importance of considering monomer structure with respect to which the growth mechanism dominates for nonfouling PEG-like plasma polymers. The deposition rate(More)
Age related macular degeneration of the eye is brought about by damage to the retinal pigment epithelium (RPE) and is a major cause of adult blindness. One potential treatment method is transplantation of RPE cells grown in vitro. Maintaining RPE cell viability and physiological function in vitro is a challenge, and this must also be achieved using(More)