Learn More
Six monoclonal antibodies have been isolated from mice immunized with synthetic peptide immunogens whose sequences are derived from that of the human c-myc gene product. Five of these antibodies precipitate p62c-myc from human cells, and three of these five also recognize the mouse c-myc gene product. None of the antibodies sees the chicken p110gag-myc(More)
In mammals, the first branchial arch (BA1) develops into a number of craniofacial skeletal elements including the jaws and teeth. Outgrowth and patterning of BA1 during early embryogenesis is thought to be controlled by signals from its covering ectoderm. Here we used Cre/loxP technology to inactivate the mouse Fgf8 gene in this ectoderm and have obtained(More)
Neurotrophin-3 (NT-3) is a member of the neurotrophin family , which includes nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5). These factors are crucial for development of the peripheral nervous system 1 , but not the central nervous system (CNS), except that NT-3 and BDNF have been implicated in the(More)
The targeted repair of mutant protooncogenes or the inactivation of their gene products may be a specific and effective therapy for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the MYC protooncogene in hematopoietic cells. Sustained expression of the MYC(More)
The proto-oncogene MYC encodes a nuclear protein whose biochemical and physiological functions remain uncertain. We used an estrogen-regulated version of the MYC protein to explore these functions. Activation of MYC in quiescent rat and mouse fibroblasts elicited re-entry into and progression through the cell cycle, bypassing early events that would follow(More)
The proto-oncogene MYCN is often amplified in human neuroblastomas. The assumption that the amplification contributes to tumorigenesis has never been tested directly. We have created transgenic mice that overexpress MYCN in neuroectodermal cells and develop neuroblastoma. Analysis of tumors by comparative genomic hybridization revealed gains and losses of(More)
Overexpression of the proto-oncogene c-myc has been implicated in the genesis of diverse human tumours. c-Myc seems to regulate diverse biological processes, but its role in tumorigenesis and normal physiology remains enigmatic. Here we report the generation of an allelic series of mice in which c-myc expression is incrementally reduced to zero. Fibroblasts(More)
Overexpression of the MYC protooncogene has been implicated in the genesis of diverse human tumors. Tumorigenesis induced by MYC has been attributed to sustained effects on proliferation and differentiation. Here we report that MYC may also contribute to tumorigenesis by destabilizing the cellular genome. A transient excess of MYC activity increased(More)
Amplified cellular genes in mammalian cells frequently manifest themselves as double minute chromosomes (DMs) and homogeneously staining regions of chromosomes (HSRs). With few exceptions both karyotypic abnormalities appear to be confined to tumour cells. All vertebrates possess a set of cellular genes homologous to the transforming genes of RNA tumour(More)