Learn More
This study was undertaken to compare the ability of two guanidine compounds (aminoguanidine and methylguanidine), with different in vitro effects on NO synthase activity and AGE formation, to inhibit diabetic vascular dysfunction developing early after the onset of diabetes. In rats with STZ-induced diabetes of 5-wk duration, regional vascular [125I]albumin(More)
The fusion of cells to generate syncytial tissues is a crucial event in the development of many organisms. In the lens of the vertebrate eye, proteins and other macromolecules diffuse from cell to cell via the large molecule diffusion pathway (LMDP). We used the tamoxifen-induced expression of GFP to investigate the nature and role of the LMDP in living,(More)
The chaperone activity and biophysical properties of recombinant human alphaA- and alphaB-crystallins were studied by light scattering and spectroscopic methods. While the chaperone function of alphaA-crystallin markedly improves with an increase in temperature, the activity of alphaB homopolymer appears to change very little upon heating. Compared with(More)
Kinetic and structural changes in recombinant human aldose reductase (AR) due to modification by S-nitrosoglutathione (GSNO) were investigated. Incubation of the enzyme with 10-50 microM GSNO led to a time- and concentration-dependent inactivation of the enzyme, with a second-order rate constant of 0.087 +/- 0.009 M-1 min-1. However, upon exhaustive(More)
Aldose reductase is an NADPH-dependent oxidoreductase that catalyzes the reduction of a broad range of aldehydes, including glucose. Since aldose reductase has been strongly implicated in the development of the chronic complications of diabetes mellitus, much effort has been devoted to understanding the structure and mechanism of this enzyme, and many(More)
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of(More)
Amadoriases I and II are deglycation isoenzymes from Aspergillus sp. of potential relevance for treatment of diabetic complications resulting from excessive protein glycation. Amadoriase II has a preference for anionic substrate with a K(m) of 0.23 and 2.53 mM for fructosylglycine and fructosylpropylamine, respectively. In contrast, the corresponding K(m)(More)
Carbohydrates with high glycaemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously produced(More)
Aldose reductase is inactivated by physiological disulfides such as GSSG and cystine. To study the mechanism of disulfide-induced enzyme inactivation, we examined the rate and extent of enzyme inactivation using wild-type human aldose reductase and mutants containing cysteine-to-serine substitutions at positions 80 (C80S), 298 (C298S), and 303 (C303S). The(More)
RATIONALE Atherosclerotic lesion formation is associated with the accumulation of oxidized lipids. Products of lipid oxidation, particularly aldehydes, stimulate cytokine production and enhance monocyte adhesion; however, their contribution to atherosclerotic lesion formation remains unclear. OBJECTIVE To test the hypothesis that inhibition of aldehyde(More)