J. Mark Petrash

Learn More
The fusion of cells to generate syncytial tissues is a crucial event in the development of many organisms. In the lens of the vertebrate eye, proteins and other macromolecules diffuse from cell to cell via the large molecule diffusion pathway (LMDP). We used the tamoxifen-induced expression of GFP to investigate the nature and role of the LMDP in living,(More)
This study was undertaken to compare the ability of two guanidine compounds (aminoguanidine and methylguanidine), with different in vitro effects on NO synthase activity and AGE formation, to inhibit diabetic vascular dysfunction developing early after the onset of diabetes. In rats with STZ-induced diabetes of 5-wk duration, regional vascular [125I]albumin(More)
The chaperone activity and biophysical properties of recombinant human alphaA- and alphaB-crystallins were studied by light scattering and spectroscopic methods. While the chaperone function of alphaA-crystallin markedly improves with an increase in temperature, the activity of alphaB homopolymer appears to change very little upon heating. Compared with(More)
Bovine lens aldose reductase (ALR2) is inactivated by copper ion [Cu(II)] through an oxygen-independent oxidative modification process. A stoichiometry of 2 equiv of Cu(II)/enzyme mol is required to induce inactivation. While metal chelators such as EDTA or o-phenantroline prevent but do not reverse the ALR2 inactivation, DTT allows the enzyme activity to(More)
Aldose reductase is inactivated by physiological disulfides such as GSSG and cystine. To study the mechanism of disulfide-induced enzyme inactivation, we examined the rate and extent of enzyme inactivation using wild-type human aldose reductase and mutants containing cysteine-to-serine substitutions at positions 80 (C80S), 298 (C298S), and 303 (C303S). The(More)
Kinetic and structural changes in recombinant human aldose reductase (AR) due to modification by S-nitrosoglutathione (GSNO) were investigated. Incubation of the enzyme with 10-50 microM GSNO led to a time- and concentration-dependent inactivation of the enzyme, with a second-order rate constant of 0.087 +/- 0.009 M-1 min-1. However, upon exhaustive(More)
Aldose reductase is an NADPH-dependent oxidoreductase that catalyzes the reduction of a broad range of aldehydes, including glucose. Since aldose reductase has been strongly implicated in the development of the chronic complications of diabetes mellitus, much effort has been devoted to understanding the structure and mechanism of this enzyme, and many(More)
Alpha-crystallin, a large lenticular protein complex made up of two related subunits (alphaA- and alphaB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and(More)
PURPOSE Aldose reductase (AR) has been a drug target because of its involvement in the development of secondary complications of diabetes including cataract. We have previously reported that the aqueous extract of Emblica officinalis and its constituent tannoids inhibit AR in vitro and prevent hyperglycemia-induced lens opacification in organ culture. The(More)
Diabetes is associated with activation of the polyol pathway, in which glucose is converted to sorbitol by aldose reductase. Previous studies focused on the role of sorbitol in mediating diabetic complications. However, in the proximal tubule, sorbitol can be converted to fructose, which is then metabolized largely by fructokinase, also known as(More)