Learn More
The dimensional reduction of D-dimensional spacetimes arising in string/M-theory, to the conformal Einstein frame, may give rise to cosmologies with accelerated expansion. Through a complete analysis of the dynamics of doubly warped product spacetimes, in terms of scale invariant variables, it is demonstrated that for D ≥ 10, eternally accelerating(More)
We study equilibrium states in relativistic galactic dynamics which are described by stationary solutions of the Einstein-Vlasov system for collisionless matter. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a bounded state space. Based on a dynamical systems analysis we derive(More)
We investigate the dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations with Bianchi type I symmetry by using dynamical systems methods. All models are forever expanding and isotropize toward the future; toward the past there exists a singularity. We identify and describe all possible past asymptotic states; in particular, on the(More)
We investigate spherically symmetric equilibrium states of the Vlasov-Poisson system, relevant in galactic dynamics. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a region with compact closure. Based on a dynamical systems analysis we derive theorems that guarantee that the(More)
We consider the dynamics towards the initial singularity of Bianchi type IX vacuum and orthogonal perfect fluid models with a linear equation of state. The 'Bianchi type IX attractor theorem' states that the past asymptotic behavior of generic type IX solutions is governed by Bianchi type I and II vacuum states (Mixmaster attractor). We give a comparatively(More)
We investigate relativistic spherically symmetric static perfect fluid models in the framework of the theory of dynamical systems. The field equations are recast into a regular dynamical system on a 3-dimensional compact state space, thereby avoiding the non-regularity problems associated with the Tolman-Oppenheimer-Volkoff equation. The global picture of(More)
For spherically symmetric relativistic perfect fluid models, the well-known Buchdahl inequality provides the bound 2M/R 8/9, where R denotes the surface radius and M the total mass of a solution. By assuming that the ratio p/ρ be bounded, where p is the pressure, ρ the density of solutions, we prove a sharper inequality of the same type, which depends on(More)
  • 1