Learn More
A lattice Boltzmann (LB) model for the simulation of realistic multicomponent mixtures is constructed. In the hydrodynamic limit, the LB model recovers the equations of continuum mechanics within the mixture-averaged diffusion approximation. The present implementation can be used to simulate realistic mixtures with arbitrary Schmidt numbers and molecular(More)
A new kinetic model for binary mixtures and its Lattice Boltzman (LB) discretiza-tion is presented. In the hydrodynamic limit the model recovers the Navier-Stokes and the Stefan-Maxwell binary diffusion equations. The thermodynamic consistency is ensured by the defined non-negative entropy production within the domain of applicability of the model. The(More)
A lattice Boltzman model for the simulation of binary mixtures is presented. Contrary to previous models, the present formulation is able to simulate mixtures with different Schmidt numbers and arbitrary molecular mass ratio of the components. In the hydrodynamic limit, the Navier-Stokes and the Stefan-Maxwell binary diffusion equations are recovered. The(More)
A lattice Boltzmann model is developed to simulate finite-rate catalytic surface chemistry. Diffusive wall boundary conditions are established to account for catalytic reactions in multicomponent mixtures. Implementation of wall boundary conditions with chemical reactions is based on a general second-order accurate interpolation scheme. Results of lattice(More)
An isothermal model on the standard two-dimension nine-velocity lattice (D2Q9) is proposed and analyzed. It originates from the thermal model with energy conservation introduced by N. I. Prasianakis and I. V. Karlin [Phys. Rev. E 76, 016702 (2007)]. The isothermal and the thermal equivalent models are tested through the simulation of the decay of a shear(More)
The catalytic combustion of fuel-lean methane/air premixtures over platinum was investigated experimentally and numerically in the pressure range 4 to 16 bar. Experiments were performed in an optically accessible, laminar channel-flow catalytic reactor. In situ, spatially resolved Raman measurements of major species and temperature over the reactor boundary(More)
This research is focused on the analysis of adsorbed CH4 intermediates at oxidized Pd9 nanoparticles supported on γ-alumina. From first-principle density functional theory calculations, several configurations, charge transfer and electronic density of states have been analyzed in order to determine feasible paths for the oxidation process. Methane oxidation(More)
PdO is one of the most important catalytic materials currently used in the industry. In redox catalytic reactions involving PdO, the bulk phase is an additional source of oxygen. This leads to strong transformations not only at the surface of PdO but also in the near sub-surface and bulk regions. The redox process is, therefore, governed not only by the(More)
This research is focused on the analysis of adsorbed bare and oxidized Pd(9) nanoparticles supported on γ-alumina. From first-principle density functional theory calculations, several configurations, charge transfer and electronic density of states have been analyzed in order to determine feasible paths for the oxidation process. Studies of Pd/PdO(More)
This research is focused on the analysis of adsorbed CH4 intermediates at oxidized Pd9 nanoparticles supported on gamma-alumina. From first-principle density functional theory (DFT) calculations, several configurations, charge transfer and electronic density of states have been analyzed in order to determine feasible paths for the oxidation process.(More)