Learn More
The RNaseIII-containing enzyme Dicer is believed to be required for the processing of most, if not all, microRNAs (miRNAs) and for processing long dsRNA into small interfering RNAs. Because the complete loss of Dicer in both zebrafish and mice results in early embryonic lethality, it has been impossible to determine what role, if any, Dicer has in(More)
The avian body plan has undergone many modifications, most associated with adaptation to flight and bipedal walking. Some of these modifications may be owing to avian-specific changes in the embryonic Hox expression code. Here, we have examined Hox expression in alligator, the closest living relative of birds, and an archosaur with a more conservative body(More)
MicroRNAs (miRNAs) are an abundant class of gene regulatory molecules (reviewed in refs 1, 2). Although computational work indicates that miRNAs repress more than a third of human genes, their roles in vertebrate development are only now beginning to be determined. Here we show that miR-196 acts upstream of Hoxb8 and Sonic hedgehog (Shh) in vivo in the(More)
Localization of bicoid (bcd) mRNA to the anterior and oskar (osk) mRNA to the posterior of the Drosophila oocyte is critical for embryonic patterning. Previous genetic studies implicated exuperantia (exu) in bcd mRNA localization, but its role in this process is not understood. We have biochemically isolated Exu and show that it is part of a large(More)
Subcellular localization of mRNAs within the Drosophila oocyte is an essential step in body patterning. Yps, a Drosophila Y-box protein, is a component of an ovarian ribonucleoprotein complex that also contains Exu, a protein that plays an essential role in mRNA localization. Y-box proteins are known translational regulators, suggesting that this complex(More)
MicroRNAs (miRNAs) are a class of short ( approximately 22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA(More)
Patterning of the vertebrate axial skeleton requires precise spatial and temporal control of Hox gene expression during embryonic development. MicroRNAs (miRNAs) are recently described modulators of gene activity, and members of the miR-196 and miR-10 families have been shown to target several Hox genes in vivo. Testing miRNA function in mice is complicated(More)
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3' UTRs, although the(More)
Analysis of gene expression patterns is central to the study of embryonic development. This chapter details methods for detecting gene expression in whole mouse embryos and in tissue sections. The most commonly used methods available in mouse are described and include mRNA in situ hybridization, immunohistochemistry, and detection of enzymatic and(More)
Vertebrate somites are subdivided into lineage compartments, each with distinct cell fates and evolutionary histories. Insights into somite evolution can come from studying amphioxus, the best extant approximation of the chordate ancestor. Amphioxus somites have myotome and non-myotome compartments, but development and fates of the latter are incompletely(More)