Learn More
Antigen-presenting cells (APC) tailor immune responses to microbial encounters by stimulating differentiation of CD4 T cells into the Th1 and Th2 lineages. We demonstrate that APC use the Notch pathway to instruct T cell differentiation. Strikingly, of the two Notch ligand families, Delta induces Th1, while Jagged induces the alternate Th2 fate. Expression(More)
In higher metazoans, phagocytosis is essential in host defense against microbial pathogens and in clearance of apoptotic cells. Both microbial and apoptotic cells are delivered on a common route from phagosomes to lysosomes for degradation. Here, we found that activation of the Toll-like receptor (TLR) signaling pathway by bacteria, but not apoptotic cells,(More)
Neutrophils use immunoglobulins to clear antigen, but their role in immunoglobulin production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T cell-independent immunoglobulin responses to circulating antigen. Neutrophils colonized peri-MZ areas after postnatal mucosal colonization by(More)
Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single(More)
Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate(More)
Dendritic cells constitutively sample the tissue microenvironment and phagocytose both microbial and host apoptotic cells. This leads to the induction of immunity against invading pathogens or tolerance to peripheral self antigens, respectively. The outcome of antigen presentation by dendritic cells depends on their activation status, such that Toll-like(More)
Adaptive immune responses rely on differentiation of CD4 T helper cells into subsets with distinct effector functions best suited for host defence against the invading pathogen. Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified subset, separate from the T helper type 1 (T(H)1) and T helper type 2 (T(H)2) subsets. Synergy(More)
A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs).(More)
Phagocytosis has essential functions in immunity. Here we highlight the presence of a subcellular level of self-non-self discrimination in dendritic cells that operates at the level of individual phagosomes. We discuss how engagement of Toll-like receptor signaling controls distinct programs of phagosome maturation. An inducible mode of phagosome maturation(More)
Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated - a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage - is less well understood. New evidence has shown that features of microbial viability can be detected(More)