Learn More
Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of(More)
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg 2 of sky with arcminute resolution at 150 GHz. Using a(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. ABSTRACT We present a catalog of galaxy clusters selected via their(More)
– 3 – Received ; accepted – 4 – ABSTRACT The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset Grego-rian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer camera. It is located at the Amundsen-Scott South Pole station in Antarctica. The design of the SPT emphasizes careful control of spillover and scattering, to minimize(More)
The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the(More)
This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper(More)
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst(More)
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation(More)