Learn More
In the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease, controversy exists concerning the use of apomorphine- or D-amphetamine-induced rotations as reliable indicators of nigrostriatal dopamine depletion. Our objective was to evaluate which, if either, drug-induced behavior is more predictive of the extent of nigrostriatal(More)
Brain-derived neurotrophic factor (BDNF) promotes the survival of dopaminergic neurons in primary cultures and protects these neurons from the neurotoxic effects of 6-hydroxydopamine. The protective mechanism of BDNF on neurotoxicity was evaluated using CATH.a cells, a clonal catecholaminergic cell line derived from the central nervous system. Dopamine(More)
Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 +/- 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at(More)
The effect of chloride ion on the transport of [3H]dopamine into synaptic vesicles purified from rat striatum has been evaluated. The inclusion of 10 mM chloride ion in the incubation medium produced a 100% increase in temperature-sensitive [3H]dopamine uptake into synaptic vesicles from approximately 1800 pmol/mg to 3600 pmol/mg of protein. Half-maximal(More)
The intraperitoneal (i.p.) injection of apomorphine or d-amphetamine significantly increased locomotor activity in Sprague-Dawley rats. Prior administration of the cannabinoid receptor antagonist, SR 141716A, significantly enhanced the stimulant effect of both d-amphetamine and apomorphine in a dose-dependent manner. Administration of SR 141716A alone had(More)
Dopamine produces a time- and dose-dependent increase in cell death in a clonal catecholaminergic cell line (CATH.a) derived from the central nervous system. Cell death also occurred after treatment with the catecholamines L-dihydroxyphenylalanine, norepinephrine, epinephrine, and isoproterenol, as well as the neurotoxic compound 6-hydroxydopamine. Cell(More)
Amphetamine, 10(-7) M or greater, evoked the release of [3H]dopamine ([3H]DA) and inhibited subsequent K+-evoked [3H]DA release from striatal synaptosomes superfused at a flow rate (1 ml/min) that prevented reuptake. Amphetamine inhibited the K+-evoked release of [3H]DA to a lesser extent in striatal slices or in synaptosomes superfused at a flow rate (0.35(More)
The role of catecholamine neuronal systems in mediating the analeptic and thermogenic effects of thyrotropin-releasing hormone (TRH) was examined in long-sleep (LS) and short-sleep (SS) mice. TRH [0.1 to 40 micrograms, intracerebroventricularly (icv)] was associated with a reduction in the sleep times of LS mice, but no dose of TRH had any effect on sleep(More)