J. M. D. MacElroy

Learn More
Water self-diffusion within human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of external ac and dc electric fields. The computed diffusive (p(d)) and osmotic (p(f)) permeabilities under zero-field conditions are (0.718 ± 0.24) × 10(-14) cm(3) s(-1) and (2.94 ± 0.47) × 10(-14) cm(3) s(-1), respectively;(More)
Novel carbon nanostructures can serve as effective storage media for methane, a source of "clean energy" for the future. We have used Grand Canonical Monte Carlo Simulation for the modeling of methane storage at 293 K and pressures up to 80 MPa in idealized bundles of (10,10) armchair-type single-walled carbon nanotubes and wormlike carbon pores. We have(More)
Water vapor sorption experiments have been conducted on Kevlar 49 at 30 degrees C over a range of water vapor pressures in 0-90% of saturation and on the as-polymerized form of the material at 30, 45, and 60 degrees C over a series of water vapor pressures of 0-60%, 0-25%, and 0-15%, respectively. For each of the differential steps in water vapor pressure,(More)
A methodology for the microwave parallel synthesis of libraries is described. The procedure involves the use of an array of expandable reaction vessels, which can accommodate pressure buildup within the vessel due to heating without loss of volatile solvents or reagents. A demonstration 24-membered library of substituted 4(5)-sulfanyl-1H-imidazoles was(More)
Nonequilibrium molecular-dynamics (MD) simulations have been performed for the growth and dissolution of a spherical methane hydrate crystallite, surrounded by a saturated water-methane liquid phase, in both the absence and presence of external electromagnetic (e/m) fields in the microwave to far infrared range (5-7500 GHz) at root-mean square (rms)(More)
In this mini-review, we summarise and critique the emerging field of quantum-based molecular simulation of dye-sensitised solar cells (DSSCs), with particular focus on the deployment of organic-based dyes therein. We assess the underlying methodologies, including developments, pitfalls and challenges, whilst gauging predictive performance vis-à-vis(More)
The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The(More)
Composite asymmetric membranes are fabricated through the deposition of submicrometer thick (100 nm) silica (SiO(2)) and titania (TiO(2)) films onto flat nanoporous silica and zirconia substrates by magnetron sputtering. The deposition conditions for both coating types were systematically altered to determine their influence on the deposited coating(More)
Water-self-diffusion through single-walled carbon nanotubes (SWCNTs) inserted normal to a phospholipid membrane has been studied using equilibrium and nonequilibrium molecular dynamics simulations in the presence of static and alternating electrical fields. Four different SWCNTs were investigated: (5,5), (6,6), (8,8), and (11,11) and also three arrays of(More)