J. Lauterbach

  • Citations Per Year
Learn More
We present a major improvement to the Fourier-transform infrared (FTIR) imaging technique brought about by replacement of the commonly used step-scan spectrometer with a rapid-scanning spectrometer. This advancement dramatically decreases the time required for data collection without decreasing the data quality. With this new instrumental setup, an imaging(More)
The effect of boundaries on pattern formation was studied for the catalytic oxidation of carbon monoxide on platinum surfaces. Photolithography was used to create microscopic reacting domains on polycrystalline foils and single-crystal platinum (110) surfaces with inert titanium overlayers. Certain domain geometries give rise to patterns that have not been(More)
We present a new framework for catalyst design that integrates computer-aided extraction of knowledge with high-throughput experimentation (HTE) and expert knowledge to realize the full benefit of HTE. We describe the current state of HTE and illustrate its speed and accuracy using an FTIR imaging system for oxidation of CO over metals. However, data is(More)
High-throughput experimentation in heterogeneous catalysis has recently experienced nearly exponential growth. Initial qualitative screening has evolved into quantitative high-throughput experimentation, characterization, and analysis. This allows high-throughput catalysis now to rise above simple screening to the level of fundamental understanding of(More)
A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5 mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the(More)
A high-throughput optical technique has been developed for the rapid screening of coking resistant composition-spread promoted-catalyst libraries during hydrocarbon cracking, in particular for Jet Propellant 8(JP-8) cracking. The libraries are screened by measuring changes in the catalyst's surface color due to the accumulation and burnoff of coke from the(More)
The adsorption of atomic oxygen on unreconstructed Pt[100]-(1 x 1) and reconstructed Pt[100]-(5 x 1) was modeled using density-functional theory in an attempt to understand the relative stability of the unreconstructed phase as a function of oxygen coverage. Our calculations showed that at zero temperature the (5 x 1) is more stable than the unreconstructed(More)
Introduction Interfacial patterning is a common feature of many non-linear systems ranging from isothermal chemical reactions [1] to viscous flow systems [2]. Underlying this behavior is the spatial decoupling of chemical species due to differences in convective or diffusive transport. The oxidation of CO on Pt(100) represents a non-linear system where(More)