J . - L . Starck

Learn More
Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500.(More)
The statistical analysis of the soon to come Planck satellite CMB data will help set tighter bounds on major cosmological parameters. On the way, a number of practical difficulties need to be tackled, notably that several other astrophysical sources emit radiation in the frequency range of CMB observations. Some level of residual contributions, most(More)
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible(More)
We present several wavelet transform algorithms and their applications in astronomical image processing (restoration, object detection , compression, etc.). Extensive literature exists on the wavelet transform and its application (Chui 1992; Daubechies 1992; Meyer 1989). A discrete wavelet transform approach can be obtained from multiresolution analysis(More)
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which(More)
We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4′.(More)
Over the last decade, overcomplete dictionaries and the very sparse signal representations they make possible, have raised an intense interest from signal processing theory. In a wide range of signal processing problems, sparsity has been a crucial property leading to high performance. As multichannel data are of growing interest, it seems essential to(More)