Learn More
Exoskeletons are mechatronic systems worn by a person in such a way that the physical interface permits a direct transfer of mechanical power and exchange of information. Upper limb robotic exoskeletons may be helpful for people with disabilities and/or limb weakness or injury. Tremor is the most common movement disorder in neurological practice. In(More)
Different approaches are available to compensate gait in persons with spinal cord injury, including passive orthoses, functional electrical stimulation (FES), and robotic exoskeletons. However, several drawbacks arise from each specific approach. Orthotic gait is energy-demanding for the user and functionally ineffective. FES uses the muscles as natural(More)
The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features(More)
Is voluntary motor control of mediolateral rhythmic sway ruled by modular organization? Answering this question has potential implications in diagnosis and rehabilitation of neurologically impairments. Superficial EMG and computerized dynamic posturography has been used in this study to investigate modular control of six healthy subjects. Postural movements(More)
As a consequence of the increase of cerebro-vascular accidents, the number of people suffering from motor disabilities is raising. Exoskeletons, Functional Electrical Stimulation (FES) devices and Brain-Machine Interfaces (BMIs) could be combined for rehabilitation purposes in order to improve therapy outcomes. In this work, a system based on a hybrid upper(More)
This document provides a review of the techniques and therapies used in gait rehabilitation after stroke. It also examines the possible benefits of including assistive robotic devices and brain-computer interfaces in this field, according to a top-down approach, in which rehabilitation is driven by neural plasticity.The methods reviewed comprise classical(More)
Stroke significantly affects thousands of individuals annually, leading to considerable physical impairment and functional disability. Gait is one of the most important activities of daily living affected in stroke survivors. Recent technological developments in powered robotics exoskeletons can create powerful adjunctive tools for rehabilitation and(More)
remor is characterized by involuntary oscillations of a part of the body. The most accepted definition is as follows: " an involuntary, approximately rhythmic , and roughly sinusoidal movement " [1]. Tremor is the most common movement disorder and is a major source of functional disability, affecting many of the daily living tasks. Although the most common(More)
This paper introduces the Hilbert Analysis (HA), which is a novel digital signal processing technique, for the investigation of tremor. The HA is formed by two complementary tools, i.e. the Empirical Mode Decomposition (EMD) and the Hilbert Spectrum (HS). In this work we show that the EMD can automatically detect and isolate tremulous and voluntary(More)
Pathological tremor is the most prevalent movement disorder. Current treatments do not attain a significant tremor reduction in a large proportion of patients, which makes tremor a major cause of loss of quality of life. For instance, according to some estimates, 65% of those suffering from upper limb tremor report serious difficulties during daily living.(More)