J. L. Garrido-Castro

Learn More
Spinal mobility measures are subject to high variability and subjectivity. Automated motion capture allows an objective and quantitative measure of mobility with high levels of precision. To validate the University of Cordoba Ankylosing Spondylitis Metrology Index (UCOASMI), an index measure of spinal mobility, based on automated motion capture, validation(More)
The handled trot of three Lusitano Purebred stallions was analyzed by using 2D and 3D kinematical analysis methods. Using the same capture and analysis system, 2D and 3D data of some linear (stride length, maximal height of the hoof trajectories) and angular (angular range of motion, inclination of bone segments) variables were obtained. A paired Student(More)
OBJECTIVE To explore the association between mobility, inflammation, and structural damage in ankylosing spondylitis (AS). METHODS Patients with AS were included in a cross-sectional study in which spinal mobility was measured by the Bath Ankylosing Spondylitis Metrology Index (BASMI) and by the University of Córdoba Ankylosing Spondylitis Metrology Index(More)
This paper describes the use of a video-based motion capture system to assess spinal mobility in patients with ankylosing spondylitis (AS). The aim of the study is to assess reliability of the system comparing it with conventional metrology in order to define and analyze new measurements that reflect better spinal mobility. A motion capture system(More)
BACKGROUND Several measurements are often used in daily clinical practice in the assessment of Ankylosing Spondylitis (AS) patients. The Assessment in SpondyloArthiritis International Society (ASAS) recommend in its core set: chest expansion modified Schöber test, Occiput to wall distance, lateral lumbar flexion, cervical rotation and The Bath Ankylosing(More)
  • 1