Learn More
Group II introns are found in eubacteria and eubacterial-derived, organellar genomes. They have ribozymic activities, by which they direct and catalyze the splicing of the exons flanking them. This chapter reviews the secondary structure and known tertiary interactions of the ribozymic component of group II introns in relation to the problems of specifying(More)
A group II intron that was previously identified within Azotobacter vinelandii by polymerase chain reac-tion with consensus primers has been completely sequenced, together with its flanking exons. In contrast to other bacterial members of group II, which are associated with mobile or other presumably non-essential DNA, the A. vinelandii intron is inserted(More)
By PCR (polymerase chain reaction) amplification and cloning, we have identified four group II self-splicing introns encoding proteins related to reverse transcriptases in natural Escherichia coli isolates belonging to the ECOR collection. One intron, IntD, interrupts a DNA sequence virtually identical to that of the previously described IS3411 Insertion(More)
The Avi.groEL intron of Azotobacter vinelandii, which interrupts the termination codon of the groEL gene, is shown to belong to a monophyletic subset of bacterial group II introns that share a large insertion at their 5' extremity and a peculiar genetic localization. Some of these introns are inserted within, right next to, or very close to, a stop codon(More)
Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are(More)
  • 1