Learn More
To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton (“BONES”) that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of(More)
This paper describes a robotic-arm exoskeleton that uses a parallel mechanism inspired by the human forearm to allow naturalistic shoulder movements. The mechanism can produce large forces through a substantial portion of the range of motion (RoM) of the human arm while remaining lightweight. This paper describes the optimization of the exoskeleton's torque(More)
This paper presents a novel design for a 4 degree of freedom pneumatically-actuated upper-limb rehabilitation device. BONES is based on a parallel mechanism that actuates the upper arm by means of two passive, sliding rods pivoting with respect to a fixed structural frame. Four, mechanically-grounded pneumatic actuators are placed behind the main structural(More)
BACKGROUND Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot-based therapy. Studies evaluating predictors of functional improvement after a robotic(More)
A robot called the Closed-chain Robot for Assisting in Manual Exercise and Rehabilitation (CRAMER) was developed to assist impaired persons in making three degree-of-freedom movements of the forearm and wrist (forearm supination/pronation, wrist flexion/extension, and wrist ulnar/radial deviation). With a parts and machining cost of less than $1500, this(More)
The robot described in this paper, SUE (Supinator Extender), adds forearm/wrist rehabilitation functionality to the UCI BONES exoskeleton robot and to the ArmeoSpring rehabilitation device. SUE is a 2-DOF serial chain that can measure and assist forearm supination-pronation and wrist flexion-extension. The large power to weight ratio of pneumatic actuators(More)
Training with haptic guidance has been proposed as a technique for learning complex movements in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler parts and then using haptic feedback from a robotic exoskeleton(More)
In the last decades more robotic manipulanda have been employed to investigate the effect of haptic environments on motor learning and rehabilitation. However, implementing complex haptic renderings can be challenging from technological and control perspectives. We propose a novel robot (H-Man) characterized by a mechanical design based on cabled(More)