J Kent Leach

Learn More
OBJECTIVE To determine the optimal osteogenic source of equine mesenchymal stem cells (eMSCs) and optimize collection of and expansion conditions for those cells. ANIMALS 10 adult Quarter Horses and 8 newborn Thoroughbred foals. PROCEDURES eMSCs were isolated from bone marrow (BM), adipose tissue, and umbilical cord blood and tissue, and the osteogenic(More)
Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into(More)
Bioactive glasses are potentially useful as bone defect fillers, and vascular endothelial growth factor (VEGF) has demonstrated benefit in bone regeneration as well. We hypothesized that the specific combination of prolonged localized VEGF presentation from a matrix coated with a bioactive glass may enhance bone regeneration. To test this hypothesis, the(More)
Previous attempts to stimulate angiogenesis have focused on the delivery of growth factors and cytokines, genes encoding for specific angiogenic inductive proteins or transcription factors, or participating cells. While high concentrations of bioactive glasses have exhibited osteogenic potential, recent studies have demonstrated that low concentrations of(More)
The survival of transplanted cells and their resulting efficacy in cell-based therapies is markedly impaired due to serum deprivation and hypoxia (SD/H) resulting from poor vascularization within tissue defects. Lysophosphatidic acid (LPA) is a platelet-derived growth factor with pleiotropic effects on many cell types. Mesenchymal stromal cells (MSC)(More)
Modifying the relative concentrations of fibrinogen and thrombin can control the physical properties of fibrin gels, while the viability of associated cells has been linked to the gel's final network structure. It was hypothesized that increasing the gel ionic strength during fabrication through supplementation with sodium chloride (NaCl) would provide an(More)
The use of composite biomaterials for bone repair capitalizes on the beneficial aspects of individual materials while tailoring the mechanical properties of the composite. We hypothesized that substrate composition would modulate the osteogenic response and secretion of potent trophic factors by human mesenchymal stem cells (hMSCs). Composite scaffolds were(More)
Fibrin gels are a promising biomaterial for tissue engineering. However, current fabrication methods are time intensive with inherent variation. There is a pressing need to develop new and consistent approaches for producing fibrin-based hydrogels for examination. We developed a high throughput method for creating fibrin gels using molds fabricated from(More)
Skeletal defects commonly suffer from poor oxygen microenvironments resulting from compromised vascularization associated with injury or disease. Adipose stem cells (ASCs) represent a promising cell population for stimulating skeletal repair by differentiating toward the osteogenic lineage or by secreting trophic factors. However, the osteogenic or trophic(More)
Bone regeneration can be enhanced or accelerated by the delivery of osteogenic signalling factors or bone forming cells. These factors have commonly provided benefit when retained at the defect site with a delivery vehicle formed from natural or synthetic materials. Growth factors can be directly delivered as recombinant proteins or expressed by genetically(More)