J Karl Johnson

  • Citations Per Year
Learn More
The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and(More)
Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride(More)
The structural, electronic, phonon dispersion and thermodynamic properties of MHCO(3) (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO(3) has not yet been observed(More)
  • 1