Learn More
Cannabinoids and opioids are widely consumed drugs of abuse that produce motor depression, in part via respective activation of the cannabinoid subtype 1 receptor (CB1R) and the mu-opioid receptor (muOR), in the striatal circuitry originating in the caudate putamen nucleus (CPN). Thus, the CB1R and muOR may show similar targeting in the CPN. To test this(More)
Subcortical motor nuclei show differential expression of FosB immediate early gene products and specifically deltaFosB after short (8, 19, or 21 days) chronic exposure to typical and atypical neuroleptics represented by haloperidol and clozapine, respectively. We quantitatively examined whether there are light microscopic regional variations in area density(More)
Interactions between cannabinoid and opioid systems have been implicated in reward and drug seeking behaviors involving neuronal circuitry in the nucleus accumbens (Acb) shell and core. To determine the relevant sites, we examined the electron microscopic localization of cannabinoid type-1 (CB1) receptors and mu-opioid receptors in each Acb compartment in(More)
Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype in the caudate-putamen nucleus (CPN) have been implicated in the adverse motor effects produced by chronic administration of the typical antipsychotic drug haloperidol. To determine the functionally relevant sites, we examined the electron microscopic immunocytochemical localization of the R1(More)
Alzheimer’s disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced(More)
The central medial nucleus (CM) of thalamus is a prominent cell group of the rostral intralaminar complex of the thalamus. No previous report in the rat has comprehensively described the projections of CM. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we examined the efferent projections of CM, comparing projections from(More)
The dorsolateral caudate-putamen nucleus (CPN) and the nucleus accumbens (NAc) shell, respectively, are involved in many motor and limbic functions that are affected by activation of the 5-hydroxytryptamine2A receptor (5HT2AR) and the N-methyl-D-aspartate subtype of glutamate receptor (NMDAR). We examined the functional sites for 5HT2AR activation and(More)
—Digital waveguide models are commonly used for simulating vocal-tract acoustics based on physiological data. In particular , waveguide models with half-sample delays are known to be well suited for speech production research. This paper presents enhancements to such a model, aimed at improved accuracy in mapping physiological vocal-tract data (shape and(More)
Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype have been implicated in behavioral sensitization to psychostimulants and in psychotic behaviors involving excitation of ventral tegmental area (VTA) dopaminergic neurons. Antagonists of serotonin (5-hydroxytryptamine, 5-HT) receptors of the 5-HT(2A) subtype are potent antipsychotics that(More)
The frontal cortex (FrC) and cingulate cortex (CgC) are critical sites for normal cognitive function, as well as cognitive dysfunction in schizophrenia. Thus, modulation of synaptic transmission within these cortical areas may, in part, account for the therapeutic actions of antipsychotic drugs such as haloperidol and clozapine. FosB and DeltaFosB are(More)