J. J. Dannenberg

Gabor Pohl3
Joshua A. Plumley1
Shashikanth Ponnala1
Amparo Asensio1
Melissa A. Deri1
3Gabor Pohl
1Joshua A. Plumley
1Shashikanth Ponnala
1Amparo Asensio
1Melissa A. Deri
Learn More
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of(More)
Zirconium-89 is an effective radionuclide for antibody-based positron emission tomography (PET) imaging because its physical half-life (78.41 h) matches the biological half-life of IgG antibodies. Desferrioxamine (DFO) is currently the preferred chelator for (89)Zr(4+); however, accumulation of (89)Zr in the bones of mice suggests that (89)Zr(4+) is(More)
We present ONIOM calculations using B3LYP/d95(d,p) as the high level and AM1 as the medium level on parallel β-sheets containing four strands of Ac-AAAAAA-NH2 capped with either Ac-AAPAAA-NH2 or Ac-AAAPAA-NH2. Because Pro can form H-bonds from only one side of the peptide linkage (that containing the C═O H-bond acceptor), only one of the two Pro-containing(More)
We present ONIOM calculations using density functional theory (DFT) as the high and AM1 as the medium level that explore the abilities of different hexapeptide sequences to terminate the growth of a model for the tau-amyloid implicated in Alzheimer's disease. We delineate and explore several design principles (H-bonding in the side chains, using(More)
We report density functional theory calculations at the B3LYP/D95(d,p) level on several different cyclic H-bonding dimers, where the monomers of each are connected by a pair of N-H···O=C H-bonding interactions, and the H-bonding donors and acceptors on each monomer are separated by polarizable spacers. Depending on the structures, the individual H-bonds(More)
  • 1