J. J. Buchanan

Learn More
Subjects performed two patterns of coordination between the elbow and wrist joints of the right arm: 1) wrist flexion synchronized with elbow flexion and wrist extension with elbow extension (homologous muscle groups); and 2) wrist extension synchronized with elbow flexion and wrist flexion with elbow extension (nonhomologous muscle groups). As a parameter,(More)
The coordination dynamics (e.g., stability, loss of stability, switching) of multijoint arm movements are studied as a function of forearm rotation. Rhythmical coordination of flexion and extension of the right elbow and wrist was examined under the following conditions: (1) forearm supine (forearm angle 0 degrees), simultaneous coordination of wrist(More)
Most studies examining the stability and change of patterns in biological coordination have focused on identifying generic bifurcation mechanisms in an already active set of components (see Kelso 1994). A less well understood phenomenon is the process by which previously quiescent degrees of freedom (df) are spontaneously recruited and active df suppressed.(More)
The present study aims to understand the neurally based coordination dynamics (multistability, loss of stability, transitions, etc.) of trajectory formation in a simple task. Six subjects produced two spatial patterns of coordination in the xy plane by alternating the abduction-adduction and flexion-extension motions of their right index finger. Each(More)
Most studies of movement coordination deal with temporal patterns of synchronization between components, often without regard to the actual amplitudes the components make. When such a system is required to produce a composite action that is spatially constrained, coordination persists, but its stability is modulated by spatial requirements effected, we(More)
  • 1