Learn More
Tests for incongruence as an indicator of among-data partition conflict have played an important role in conditional data combination. When such tests reveal significant incongruence, this has been interpreted as a rationale for not combining data into a single phylogenetic analysis. In this study of lorisiform phylogeny, we use the incongruence length(More)
Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a(More)
The possibility of recombination in human mitochondrial DNA (mtDNA), raised recently by Awadalla et al. (1), holds crucial implications for many evolutionary studies (2). Here, we reexamine the data analyzed in (1), show that some of those data are likely unreliable, and suggest that the short-distance correlations found by Awadalla et al. (1) can be more(More)
Recently, there has been much debate about what kinds of genetic markers should be implemented as new core loci that constitute national DNA databases. The choices lie between conventional STRs, ranging in size from 100 to 450 bp; mini-STRs, with amplicon sizes less than 200 bp; and single nucleotide polymorphisms (SNPs). There is general agreement by the(More)
The overall CAD methodology for the design of UltraSPARC-I microprocessor at Sun is described in this paper. Topics discussed include: CAD flow strategy, tool development and integration strategy, and design infrastructure. The importance of concurrent design style, modular CAD flow environment , incremental design verification and early design quality(More)
A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and(More)
Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding.(More)
Reliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and(More)
Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome(More)
The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the(More)