Learn More
The leptin hormone is critical for normal food intake and metabolism. While leptin receptor (Lepr) function has been well studied in the hypothalamus, the functional relevance of Lepr expression in the ventral tegmental area (VTA) has not been investigated. The VTA contains dopamine neurons that are important in modulating motivated behavior, addiction, and(More)
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a prominent role in feeding and energy homeostasis. The rodent MCH receptor (MCH1R) is highly expressed in the nucleus accumbens shell (AcSh), a region that is important in the regulation of appetitive behavior. Here we establish a role for MCH and MCH1R in mediating a(More)
Conditional mutant techniques that allow spatial and temporal control over gene expression can be used to create mice with restricted genetic modifications. These mice serve as powerful disease models in which gene function in adult tissues can be specifically dissected. Current strategies for conditional genetic manipulation are inefficient, however, and(More)
μ-Opioid receptor (MOR) agonism induces palatable food consumption principally through modulation of the rewarding properties of food. N-{[3,5-difluoro-3'-(1H-1,2,4-triazol-3-yl)-4-biphenylyl]methyl}-2,3-dihydro-1H-inden-2-amine (GSK1521498) is a novel opioid receptor inverse agonist that, on the basis of in vitro affinity assays, is greater than 10- or(More)
Previous research has shown that cAMP response element (CRE)-mediated transcription is activated in the nucleus accumbens, a major brain reward region, by a variety of environmental stimuli and contributes to neuroadaptations to these stimuli. CRE-binding protein (CREB) is the most studied activator of CRE transcription and has been implicated in this brain(More)
Subjects observed a reversible figure (Necker cube), and were asked to switch a lever about twice a minute. The direction of the lever switch indicated whether a reversal of the Necker cube was just experienced or not experienced. The Bereitschaftspotential (BP, readiness potential) turned out to be smaller in amplitude but earlier in onset prior to the(More)
Neuromedin U (NMU) is a highly conserved neuropeptide which regulates food intake and body weight. Transgenic mice lacking NMU are hyperphagic and obese, making NMU a novel target for understanding and treating obesity. Neuromedin U receptor 2 (NMUR2) is a high-affinity receptor for NMU found in discrete regions of the central nervous system, in particular(More)
BACKGROUND Neuromedin U (NMU) is a neuropeptide enriched in the nucleus accumbens shell (NAcSh), a brain region associated with reward. While NMU and its receptor, NMU receptor 2 (NMUR2), have been studied for the ability to regulate food reward, NMU has not been studied in the context of drugs of abuse (e.g., cocaine). Furthermore, the neuroanatomical(More)
BACKGROUND Motivation for high-fat food is thought to contribute to excess caloric intake in obese individuals. A novel regulator of motivation for food may be neuromedin U (NMU), a highly-conserved neuropeptide that influences food intake. Although these effects of NMU have primarily been attributed to signaling in the paraventricular nucleus of the(More)
There is growing evidence that over consumption of high-fat foods and insulin resistance may alter hippocampal-dependent cognitive function. To study the individual contributions of diet and peripheral insulin resistance to learning and memory, we used a transgenic mouse line that overexpresses ecto-nucleotide pyrophosphatase phosphodiesterase-1 in(More)