J H Jungmann

Learn More
Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a(More)
To describe the microscopic properties of matter, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. In atoms the charge distributions described by the wave function are rarely observed. The hydrogen atom is unique, since it only has one electron and, in a dc electric field, the Stark(More)
In nonhydrogenic atoms in a dc electric field, the finite size of the ionic core introduces a coupling between quasibound Stark states that leads to avoided crossings between states that would otherwise cross. Near an avoided crossing, the interacting states may have decay amplitudes that cancel each other, decoupling one of the states from the ionization(More)
A newly-developed " quantum microscope " uses photoionization and an electrostatic magnifying lens to directly observe the electron orbitals of an excited hydrogen atom. The wave function plays a fundamental role in quantum theory, yet a direct observation of it remains elusive. Observable properties, such as the position of an atom or the momentum of an(More)
  • 1