J. Gavillet

Learn More
The catalytic growth of single-wall carbon nanotubes is investigated by high-resolution transmission electron microscopy. The similarities between the samples synthesized from different techniques suggest a common growth mechanism based on a vapor-liquid-solid model. Quantum-molecular-dynamics simulations support a root growth mechanism where carbon atoms(More)
We present a review of experimental and theoretical results on the nucleation and growth of single-walled nanotubes, with particular emphasis on the growth of nanotube bundles emerging from catalyst particles obtained from evaporation-based elaboration techniques. General results are first discussed. Experiments strongly suggest a root-growth process in(More)
Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20◦ to 110◦ by modifying nanoscale(More)
Non-evaporable getter (NEG) film coatings were developed at CERN to provide linear pumping for vacuum chambers [1]. These NEG film coatings offer several advantages compared to the existing solutions. Since the whole inner surface of the vacuum chamber can be coated, a large increase of the pumping speed per unit length of chamber is obtained. Additionally,(More)
Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 and 120 kg/m2 s and the base heat flux was varied from 30 to 80 kW/m2. Water enters the test channel under subcooled(More)
  • 1