J. G. E. M. Fraaije

Learn More
In this paper we present a model for the ion exchange effects in protein adsorption. The model is applied to chromatography of lysozyme on strong cation exchanger 'mono S'. The experimental and general thermodynamic aspects have been discussed in Part 1, the preceding paper. The main modelling assumptions are (i) the charge regulation is confined to the(More)
An experimental analysis of charge regulation in protein adsorption is presented. The model system consists of colloidal particles of the slightly water soluble salt silver iodide as the adsorbent and the protein bovine serum albumin as the adsorbate. Protein adsorption experiments corroborate earlier findings that albumin adsorbs maximally close to the(More)
We discuss the development of hierarchical polymer particles, or variegated polymersome composites, in which at least two different components are phase separated within one polymersome chimaera. We briefly discuss the present status in experimental polymersome research, and then discuss a speculative design strategy, based on mesoscopic simulations with a(More)
A method for determination of the orientation of adsorbed structure-stable proteins using Total Internal Reflection Fluorescence is outlined. The theory has been elaborated for orientation studies on adsorbed free base cytochrome c, of which the prophyrin can be used as an intrinsic fluorescent label. The ratio of fluorescence intensities at two(More)
The first three-dimensional simulation of shear-induced phase transitions in a polymeric system has been performed. The method is based on dynamic density-functional theory. The pathways between a bicontinuous phase with developing gyroid mesostructure and a lamellar/cylinder phase coexistence are investigated for a mixture of flexible triblock(More)
The Leibler theory [L. Leibler, Macromolecules 13 1602 (1980)] for mi-crophase separation in AB block copolymer melts is generalized for systems with arbitrary topology of molecules. A diagrammatic technique for calculation of the monomeric correlation functions is developed. The free energies of various mesophases are calculated within the second-harmonic(More)
In this paper, we incorporate some real-system effects into the theory of orientational phase transitions under shear flow [M. E. Cates and S. T. Milner, Phys. Rev. Lett. 62 1856 (1989) and G. H. Fredrickson, J. Rheol. 38, 1045 (1994)]. In particular, we study the influence of the shear-cell boundaries on the orientation of the lamellar phase. We predict(More)
A computer simulation method is proposed to study the effects of hydrodynamic interactions on protein crystallization. It is a combination of Stokesian dynamics and continuum hydrodynamics and is referred to as "microhydrodynamics." The method is checked against analytical expressions for Stokes drag and diffusion coefficients for unit spheres. For a number(More)
We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melts under reciprocating shear flow. We show that, similar to the steady shear, the oscillating flow anisotropically suppresses fluctuations and gives rise to the [parallel]--> [perpendicular] transition. The experimentally observed high-frequency reverse(More)