J. G. Alzate

Learn More
We present a study of the electric-field-induced switching of magnetic memory bits exhibiting interfacial voltage-controlled magnetic anisotropy (VCMA). Switching is analyzed in the single-domain approximation and in the thermally activated regime. The effects of external magnetic fields, magnitudes of the perpendicular anisotropy and VCMA effect, and(More)
In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg 1/3 Nb 2/3)O 3 ] (1Àx) –[PbTiO(More)
We provide a progress update on the spin wave nanofabric. The nanofabric comprises magneto-electric cells and spin wave buses serving for spin wave propagation. The magneto-electric cells are used as the input/output ports for information transfer between the charge and the spin domains, while information processing inside the nanofabric is via spin waves(More)
Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the(More)
  • 1