Learn More
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst = −300 nT and Kp = 9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving(More)
The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001,(More)
In this study, three clones of Russet Burbank were grown at five different seed production sites and one other clone was grown at three of these sites. Seed from these treatments was then evaluated at two commercial production sites, in Victoria and Tasmania. Production site had a significant effect on the subsequent performance. Plant establishment, vigor,(More)
[1] We examine signatures of two types of waves that may be involved in the acceleration of energetic electrons in Earth’s outer radiation belts. We have compiled a database of ULF wave power from SAMNET and IMAGE ground magnetometer stations for 1987– 2001. Long-duration, comprehensive, in situ VLF/ELF chorus wave observations are not available, so we(More)
The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside(More)
Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise(More)
Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found(More)
No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and(More)
Multiple discrete-energy ion bands observed by the Polar satellite in the inner magnetosphere on 9 February 1998 were investigated by means of particle simulation with a realistic model of the convection electric field. The multiple bands appeared in the energy vs. L spectrum in the 1–100 keV range when Polar traveled in the heart of the ring current along(More)