J. Feng

Learn More
Computational modelling to calculate the mechanical loading within atherosclerotic plaques has been shown to be complementary to defining anatomical plaque features in determining plaque vulnerability. However, its application has been partially impeded by the lack of comprehensive knowledge about the mechanical properties of various tissues within the(More)
Mechanical analysis has the potential to provide complementary information to aneurysm morphology in assessing its vulnerability. Reliable calculations require accurate material properties of individual aneurysmal components. Quantification of extreme extensibility and ultimate material strength of the tissue are important if rupture is to be modelled.(More)
In a previous paper we demonstrated that the linear portion of the pressure-velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time(More)
Understanding how protein folds into a functional and structural configuration is arguably one of the most important and challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus the reaction coordinates such as the fraction of native contacts, the radius of(More)
Calculating high stress concentration within carotid atherosclerotic plaques has been shown to be complementary to anatomical features in assessing vulnerability. Reliability of stress calculation may depend on the constitutive laws/strain energy density functions (SEDFs) used to characterize tissue material properties. Different SEDFs, including(More)
Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified(More)
Stroke is mainly caused by a narrowing of the carotid artery from a build-up of plaque. The risk of plaque rupture and subsequent stroke is dependent on plaque composition. Advances in imaging modalities offer a non-invasive means to assess the health of blood vessels and detect damage. However, the current diagnosis fails to identify patients with soft(More)
Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material(More)