Learn More
Specific leaf area (SLA) is an important plant functional trait as it is an indicator of ecophysiological characteristics like relative growth rate, stress tolerance and leaf longevity. Substantial intraspecific variation in SLA is common and usually correlates with environmental conditions. For instance, SLA decreases with increasing altitude, which is(More)
Changes in climate and traditional land use have contributed to a loss and fragmentation of suitable habitats for many alpine plant species. Despite the importance of these changes, our knowledge of the consequences for gene flow and genetic diversity is still poor, especially in rare taxa and at fine spatial scales. Here, we investigated the genetic(More)
Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict(More)
In many biomes, global warming has resulted in advanced and longer growing seasons, which has often led to earlier flowering in plant taxa. Elevational gradients are ideal to study the effects of global warming as they allow transplantation of plants from their original cooler higher elevations down to elevations with a prospective climate. We transplanted(More)
BACKGROUND AND AIMS Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were(More)
Subspecies are usually characterised by sets of morphological discontinuities. By means of common garden experiments, we investigated genetic differentiation in morphological and phenological traits in two geographically disjunct subspecies of Campanula thyrsoides L., i.e. subsp. thyrsoides (=C.* thyrsoides) occurring in the European Alps and Jura(More)
Numerous widespread Alpine plant species show molecular differentiation among populations from distinct regions. This has been explained as the result of genetic drift during glacial survival in isolated refugia along the border of the European Alps. Since genetic drift may affect molecular markers and phenotypic traits alike, we asked whether phenotypic(More)
Elytrigia atherica is a tall clonal grass species typical of higher salt marshes, but is gradually invading to the lower marshes. At young successional stages of a salt marsh, E. atherica is found sparsely dispersed in small groups of ramets. These patches increase in size and ramet density over time, eventually forming extensive swards as succession(More)
Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of(More)
Because inbreeding is common in natural populations of plants and their herbivores, herbivore-induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola(More)