Learn More
Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in(More)
Diagnostic features in mammograms vary widely in size and shape. Classical image enhancement techniques cannot adapt to the varying characteristics of such features. An adaptive method for enhancing the contrast of mammographic features of varying size and shape is presented. The method uses each pixel in the image as a seed to grow a region. The extent and(More)
The pectoral muscle represents a predominant density region in most medio-lateral oblique (MLO) views of mammograms; its inclusion can affect the results of intensity-based image processing methods or bias procedures in the detection of breast cancer. Local analysis of the pectoral muscle may be used to identify the presence of abnormal axillary lymph(More)
The problem of computer-aided classification of benign and malignant breast masses using shape features is addressed. The aim of the study is to look at the exceptions in shapes of masses such as circumscribed malignant tumours and spiculated benign masses which are difficult to classify correctly using common shape analysis methods. The proposed methods of(More)
The authors have developed a set of shape factors to measure the roughness of contours of calcifications in mammograms and for use in their classification as malignant or benign. The analysis of mammograms is performed in three stages. First, a region growing technique is used to obtain the contours of calcifications. Then, three measures of shape features,(More)
We present methods for the detection of sites of architectural distortion in prior mammograms of interval-cancer cases. We hypothesize that screening mammograms obtained prior to the detection of cancer could contain subtle signs of early stages of breast cancer, in particular, architectural distortion. The methods are based upon Gabor filters, phase(More)
A method for the identification of the breast boundary in mammograms is presented. The method can be used in the preprocessing stage of a system for computer-aided diagnosis (CAD) of breast cancer and also in the reduction of image file size in picture archiving and communication system applications. The method started with modification of the contrast of(More)
Computer-aided classification of benign and malignant masses on mammograms is attempted in this study by computing gradient-based and texture-based features. Features computed based on gray-level co-occurrence matrices (GCMs) are used to evaluate the effectiveness of textural information possessed by mass regions in comparison with the textural information(More)
Mammograms are difficult to interpret, especially of cancers at their early stages. We analyze the effectiveness of our adaptive neighborhood contrast enhancement (ANCE) technique in increasing the sensitivity of breast cancer diagnosis. Seventy-eight screen-film mammograms of 21 difficult cases (14 benign and seven malignant), 222 screen-film mammograms of(More)