J. E. Leo Desautels

Learn More
The authors have developed a set of shape factors to measure the roughness of contours of calcifications in mammograms and for use in their classification as malignant or benign. The analysis of mammograms is performed in three stages. First, a region growing technique is used to obtain the contours of calcifications. Then, three measures of shape features,(More)
Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in(More)
The pectoral muscle represents a predominant density region in most medio-lateral oblique (MLO) views of mammograms; its inclusion can affect the results of intensity-based image processing methods or bias procedures in the detection of breast cancer. Local analysis of the pectoral muscle may be used to identify the presence of abnormal axillary lymph(More)
Diagnostic features in mammograms vary widely in size and shape. Classical image enhancement techniques cannot adapt to the varying characteristics of such features. An adaptive method for enhancing the contrast of mammographic features of varying size and shape is presented. The method uses each pixel in the image as a seed to grow a region. The extent and(More)
We propose a method for the detection of masses in mammographic images that employs Gaussian smoothing and sub-sampling operations as preprocessing steps. The mass portions are segmented by establishing intensity links from the central portions of masses into the surrounding areas. We introduce methods for analyzing oriented flow-like textural information(More)
Mammograms are difficult to interpret, especially of cancers at their early stages. In this paper, we analyze the effectiveness of our adaptive neighborhood contrast enhancement (ANCE) technique in increasing the sensitivity of breast cancer diagnosis. Seventy-eight screen-film mammograms of 21 difficult cases (14 benign and seven malignant), 222(More)