J. Douglas Armstrong

Learn More
Disruptions in mushroom body (MB) or central complex (CC) brain structures impair Drosophila associative olfactory learning. Perturbations in adenosine 3',5' monophosphate signaling also disrupt learning. To integrate these observations, expression of a constitutively activated stimulatory heterotrimeric guanosine triphosphate-binding protein alpha subunit(More)
Drosophila mushroom bodies (MB) are bilaterally symmetric multilobed brain structures required for olfactory memory. Previous studies suggested that neurotransmission from MB neurons is only required for memory retrieval. Our unexpected observation that Dorsal Paired Medial (DPM) neurons, which project only to MB neurons, are required during memory storage(More)
Phylogenetically conserved brain centers known as mushroom bodies are implicated in insect associative learning and in several other aspects of insect behavior. Kenyon cells, the intrinsic neurons of mushroom bodies, have been generally considered to be disposed as homogenous arrays. Such a simple picture imposes constraints on interpreting the diverse(More)
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom(More)
Behavioral expression of food-associated memory in fruit flies is constrained by satiety and promoted by hunger, suggesting an influence of motivational state. Here, we identify a neural mechanism that integrates the internal state of hunger and appetitive memory. We show that stimulation of neurons that express neuropeptide F (dNPF), an ortholog of(More)
The central complex is an important center for higher-order brain function in insects. It is an intricate neuropil composed of four substructures. Each substructure contains repeated neuronal elements which are connected by processes such that topography is maintained. Although the neuronal architecture has been described in several insects and the(More)
Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P[GAL4] enhancer trap lines reveals(More)
Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil(More)
 We have studied the formation of Drosophila mushroom bodies using enhancer detector techniques to visualize specific components of these complex intrinsic brain structures. During embryogenesis, neuronal proliferation begins in four mushroom body neuroblasts and the major axonal pathways of the mushroom bodies are pioneered. During larval development,(More)
Relatively little is known about the neural circuitry underlying sex-specific behaviors. We have expressed the feminizing gene transformer in genetically defined subregions of the brain of male Drosophila, and in particular within different domains of the mushroom bodies. Mushroom bodies are phylogenetically conserved insect brain centers implicated in(More)