J. David Musgraves

Learn More
Solution-processing of chalcogenide glass materials has many benefits for the fabrication of photonic devices. We report on the structural properties of Ge23Sb7S70 glass during solution-processing. The molecular and micro-structure of the bulk glass and the n-propylamine solution, as well as the spincoated thin films and post-irradiated films are analyzed(More)
In this paper, attributes of chalcogenide glass (ChG) based integrated devices are discussed in detail, including origins of optical loss and processing steps used to reduce their contributions to optical component performance. Specifically, efforts to reduce loss and tailor optical characteristics of planar devices utilizing solution-based glass processing(More)
In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing(More)
We demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon fabricated using optical lithography and a lift-off process. The resonators exhibited a high intrinsic quality factor of 2×10(5) at 5.2 μm wavelength, which is among the highest values reported in on-chip mid-infrared (mid-IR)(More)
Selective exposure to visible light is used to permanently trim the resonant wavelengths of coupled ring-resonator filters and delay-lines realized on a chalcogenide As2S3 platform. Post-fabrication manipulation of the circuit parameters has proved an effective tool to compensate for technological tolerances, targeting demanding specifications in photonic(More)
Thin film selenide glasses have emerged as an important material for integrated photonics due to its high refractive index, mid-IR transparency and high non-linear optical indices. We prepared high-quality As2Se3 glass films using spin coating from ethylenediamine solutions. The physio-chemical properties of the films are characterized as a function of(More)
We have demonstrated what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared. The devices were fabricated from Ge23Sb7S70 chalcogenide glass (ChG) on CaF2 substrates by combing photolithographic patterning and focused ion beam milling. The waveguide-coupled cavities were characterized using a fiber end fire coupling(More)
The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the(More)
Towards a future lab-on-a-chip spectrometer, we demonstrate a compact chip-scale air-clad silicon pedestal waveguide as a Mid-Infrared (Mid-IR) sensor capable of in situ monitoring of organic solvents. The sensor is a planar crystalline silicon waveguide, which is highly transparent, between λ = 1.3 and 6.5 μm, so that its operational spectral range covers(More)
Structural relaxation behavior of N-BK7 glass was characterized at temperatures 20 °C above and below T(12) for this glass, using a thermo mechanical analyzer (TMA). T(12) is a characteristic temperature corresponding to a viscosity of 10(12) Pa·s. The glass was subject to quick temperature down-jumps preceded and followed by long isothermal holds. The(More)