J. D. Whittaker

Learn More
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state.(More)
Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states.(More)
We have developed a quantum annealing processor, based on an array of tunable coupled rf-SQUID flux qubits, fabricated in a superconducting integrated circuit process. Implementing this type of processor at a scale of 512 qubits and 1472 programmable interqubit couplers and operating at ~ 20 mK has required attention to a number of considerations that one(More)
We demonstrate coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. The coupling strength is mediated by a flux-biased rf SQUID operated in the nonhysteretic regime. By tuning the applied flux bias to the rf SQUID we change the effective mutual inductance, and thus the coupling energy, between the phase qubit and(More)
Carbon nanotube adhesion force measurements were performed on single-walled nanotubes grown over lithographically defined trenches. An applied vertical force from an atomic force microscope (AFM), in force distance mode, caused the tubes to slip across the 250-nm-wide silicon dioxide trench tops at an axial tension of 8 nN. The nanotubes slipped at an axial(More)
We describe recent experiments developed for investigating the interactions between superconducting phase quantum bits (qubits) and resonant cavities. Two-level system (TLS) defects within the junction barrier also couple to the qubits, adding more degrees of freedom, creating a rich multi-particle system for study.
Seasonal feeding grounds for loggerhead sea turtles present relatively unchecked anthropogenic hazards. Commercial fisheries, recreational boating and environmental contamination indirectly threaten subadult feeding areas. The potential effects of these types of threats are difficult to establish without an understanding of the relationship between the(More)
Significant enhancements in ion yields in time-of-flight secondary ion mass spectrometry (TOF-SIMS) are observed when water-soluble analytes are mixed with a polyelectrolyte, e.g., poly(diallyldimethylammonium chloride) or poly(sodium 4-styrenesulfonate), and then deposited in the layer-by-layer method on a surface. This previously unobserved effect is(More)
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing(More)
We have designed and constructed a drift chamber1 system containing /m=~/250 wires for use in a double arm magnetic spectrometer experiment at the Brookhaven National Laboratory AGS. Our basic experimental constraints were the need for (i) good detection efficiency (ii) a reasonably linear relationship between drift time and position (iii) long term(More)