Learn More
Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion(More)
Mutations in the HERG K(+) channel gene cause inherited long QT syndrome (LQT), a disorder of cardiac repolarization that predisposes affected individuals to lethal arrhythmias [Curran, M. E. , Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D. & Keating, M. T. (1995) Cell 80, 795-804]. Acquired LQT is far more common and is most often caused by(More)
Fatty acids (FAs) and their derivatives are essential cellular metabolites whose concentrations must be closely regulated. This implies that regulatory circuits exist which can sense changes in FA levels. Indeed, the peroxisome proliferator-activated receptor alpha (PPARalpha) regulates lipid homeostasis and is transcriptionally activated by a variety of(More)
H2AX, a member of the histone H2A family, is rapidly phosphorylated in response to ionizing radiation. This phosphorylation, at an evolutionary conserved C-terminal phosphatidylinositol 3-OH-kinase-related kinase (PI3KK) motif, is thought to be critical for recognition and repair of DNA double strand breaks. Here we report that inhibition of DNA replication(More)
The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by(More)
largely unknown. Discovery of disease-causing genes will transform our knowledge of the genetic contribution to human disease, lead to new genetic screens, and underpin research into new cures and improved lifestyles. The sequencing of the human genome has catalyzed efforts to search for disease genes by the strategy of associating sequence variants with(More)
Blood cell development relies on the expansion and maintenance of haematopoietic stem and progenitor cells in the embryo. By gene targeting in mouse embryonic stem cells, we demonstrate that the transcription factor GATA-2 plays a critical role in haematopoiesis, particularly of an adult type. We propose that GATA-2 regulates genes controlling growth factor(More)
Although cell migration is crucial for neural development, molecular mechanisms guiding neuronal migration have remained unclear. Here we report that the secreted protein Slit repels neuronal precursors migrating from the anterior subventricular zone in the telencephalon to the olfactory bulb. Our results provide a direct demonstration of a molecular cue(More)
Marijuana and related drugs (cannabinoids) have been proposed as treatments for a widening spectrum of medical disorders. R(+)-[2, 3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate (R(+)-WIN 55212-2), a synthetic cannabinoid agonist, decreased hippocampal neuronal loss after transient global(More)
Delayed neuronal death after transient cerebral ischemia may be mediated, in part, by the induction of apoptosis-regulatory gene products. Caspase-3 is a newly characterized mammalian cysteine protease that promotes cell death during brain development, in neuronal cultures, and in other cell types under many different conditions. To determine whether(More)