Learn More
Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes(More)
The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this(More)
E. coli threonyl-tRNA synthetase (ThrRS) is a class II enzyme that represses the translation of its own mRNA. We report the crystal structure at 2.9 A resolution of the complex between tRNA(Thr) and ThrRS, whose structural features reveal novel strategies for providing specificity in tRNA selection. These include an amino-terminal domain containing a novel(More)
Threonyl-tRNA synthetase from Escherichia coli represses the translation of its own mRNA by binding to the operator region located upstream from the ribosome binding site. The operator contains two stemloop structures which interact specifically with the homodimeric enzyme. Here, we provide in vitro and in vivo evidence that these two stem-loop structures(More)
Threonyl-tRNA synthetase, a class II synthetase, uses a unique zinc ion to discriminate against the isosteric valine at the activation step. The crystal structure of the enzyme with an analog of seryl adenylate shows that the noncognate serine cannot be fully discriminated at that step. We show that hydrolysis of the incorrectly formed ser-tRNA(Thr) is(More)
The expression of the gene encoding Escherichia coli threonyl-tRNA synthetase (ThrRS) is negatively autoregulated at the translational level. ThrRS binds to its own mRNA leader, which consists of four structural and functional domains: the Shine-Dalgarno (SD) sequence and the initiation codon region (domain 1); two upstream hairpins (domains 2 and 4)(More)
We describe a methodology which allows the introduction of a photoactivatable azido group at specific internal positions of any RNA in order to identify the neighboring elements of an interacting protein. The first step involves site-directed modification of the target RNA with an antisense oligodeoxyribonucleotide bearing, at its 3' or 5' phosphate, a(More)
The aim of this present work was the study of the intermolecular complexes between amphotericin B (AmB) and either cholesterol or ergosterol. In such complexes the intermolecular interaction energy mainly proceeds from both Van der Waals and H-bonding (via water molecules) forces. Our calculations have shown that the Van der Waals forces slightly favor the(More)
Escherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate(More)
The aim of this present work is the study of self-association of amphotericin B (AmB) at a molecular levels, because of its importance in the toxicity of this antibiotic. Molecular mechanics calculations have been performed considering different conformations of the polar head of AmB, the two most stable ones we have determined (B and C) and the one issued(More)