Learn More
The optical properties of in-plane integrated surface plasmon polariton (SPP) cavities comprised of a thin film area sandwiched between two one-dimensional Bragg SPP mirrors are investigated numerically and experimentally. We discuss the resonance condition of these cavities, and we analyze in details the physical origin of the dispersion of this resonance.(More)
We analytically and numerically analyze the fluorescence decay rate of a quantum emitter placed in the vicinity of a spherical metallic particle of mesoscopic size (i.e with dimensions comparable to the emission wavelength). We discuss the efficiency of the radiative decay rate and non-radiative coupling to the particle as well as their distance dependence.(More)
This paper reports the experimental observation, at optical frequencies, of the electromagnetic local density of states established by nanostructures corresponding to the recently introduced concept of optical corral [G. Colas des Francs et al., Phys. Rev. Lett. 86, 4950 (2001)]. The images obtained by a scanning near-field optical microscope under specific(More)
Surface plasmon polaritons (SPPs) are collective electron oscillations coupled to a light field which are propagating along the interface of a metal and a dielectric. As a surface wave, SPP modes feature properties essentially different from light-field modes in all dielectric structures. These properties could allow the realization of novel photonic(More)
We develop a theoretical model to compute the local density of states in a confined plasmonic waveguide. Based on this model, we derive a simple formula with a clear physical interpretation for the lifetime modification of emitters embedded in the waveguide. The gain distribution within the active medium is then computed following the formalism developed in(More)
We describe full multiple-scattering calculations of localized surface photonic states set up by lithographically designed nanostructures made of a finite number of dielectric pads deposited on a planar surface. The method is based on a numerical solution of the dyadic Dyson's equation. When the pads are arranged to form a closed circle, we find field(More)
We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating(More)
The ability to sustain plasmon oscillations gives rise to unique properties of metal nanostructures, which can be exploited for the controlled manipulation of light fields on the nanoscale. In this context we investigate electromagnetic coupling effects within lithographically produced ensembles of gold nanoparticles with a photon scanning tunnelling(More)
This paper demonstrates the efficiency of the differential method, a conventional grating theory, to investigate dielectric loaded surface plasmon polariton waveguides (DLSPPWs), known to be a potential solution for optical interconnects. The method is used to obtain the mode effective indices (both real and imaginary parts) and the mode profiles. The(More)
We introduce a new experimental method to measure the local electromagnetic density of states (LDOS) by integrating the differential scattering cross section. The signal detected essentially reflects the intrinsic scattering response of the photonic structures and renders the partial LDOS dominated by evanescent modes. We give a theoretical understanding of(More)