Learn More
The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the(More)
The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever(More)
In a two-dimensional space where a point particle interacts with a diatomic fragment, the action integral contour integral of p(theta) d theta (where theta is the angle between the fragment and the line of centers and p(theta) its conjugate momentum) is an adiabatic invariant. This invariance is thought to be a persistent dynamical constraint. Indeed, its(More)
The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates (R, r, θ). Reactivity criteria that go beyond the simple requirement of transition state theory (i.e., PR* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill these conditions cross the conventional dividing surface used in(More)
The objective of the present paper is to show the existence of motion coordination among a bundle of trajectories crossing a saddle point region in the forward direction. For zero total angular momentum, no matter how complicated the anharmonic part of the potential energy function, classical dynamics in the vicinity of a transition state is constrained by(More)
We consider a triatomic system with zero total angular momentum and demonstrate that, no matter how complicated the anharmonic part of the potential energy function, classical dynamics in the vicinity of a saddle point is constrained by symmetry properties. At short times and at not too high energies, recrossing dynamics is largely determined by elementary(More)
Conversion of translational into vibrational energy during the last step of a unimolecular reaction is brought about by the curvature of the reaction path. The corresponding coupling is analyzed by an angle-action reaction path Hamiltonian (RPH). The accuracy of the vibrational adiabatic approximation is found to be completely independent of the shape of(More)
Dreissena (Bivalvia: Dreissenidae) species can act as ecosystem engineers, physically altering freshwater ecosystems and changing benthic macro-invertebrate assemblages. The mussel beds they form can provide shelter and food for detritivorous species, whereas fouling can directly impact native bivalves. In this study, we examined the effects of the zebra(More)
Kinetic energy release distributions (KERDs) for the benzene ion fragmenting into C 4H 4 (+) and C 2H 2 have been recorded by double-focusing mass spectrometry in the metastable energy window and by a retarding field experiment up to an energy of 5 eV above the fragmentation threshold. They are compared with those resulting from the HCN loss reaction from(More)
A point charge interacting with a dipole (either induced or permanent) constitutes a completely integrable dynamical subsystem characterized by three first integrals of the motion (E, p(phi), and either l(2) or a Hamilton-Jacobi separation constant beta). An ion-molecule reaction (capture or fragmentation) can be seen as an interaction between such a(More)