J. C. Dionísio

Learn More
The hippocampal mossy fiber terminals of CA3 area contain high levels of vesicular zinc that is released in a calcium-dependent way, following high-frequency stimulation. However the properties of zinc release during normal synaptic transmission, paired-pulse facilitation and mossy fiber long-term potentiation are still unknown. Using the fluorescent zinc(More)
An important pool of chelatable zinc is present in the synaptic vesicles of mossy fiber terminals from hippocampal CA3 area, being zinc released following single or repetitive electrical stimulation. Previous studies have suggested different synaptic roles for released mossy fiber zinc, including the inhibition of presynaptic calcium and of postsynaptic(More)
Multiple calcium signaling pathways, including intracellular calcium release that is mediated by inositol triphosphate (IP3) or ryanodine calcium store receptors, seem to be involved in CA1 hippocampal synaptic plasticity. We have addressed the role of dendritic calcium release in short- and long-term potentiation (STP and LTP) using thapsigargin, which(More)
The induction of long-term potentiation (LTP) in CA1 hippocampal area requires a rise in intracellular postsynaptic calcium. Two major calcium mechanisms may mediate the transmembrane calcium influxes that contribute to this calcium accumulation: the N-methyl-D-aspartate (NMDA) receptor channels, which are voltage dependent and have large calcium(More)
A role in the control of excitability has been attributed to insulin via modulation of potassium (K(+)) currents. To investigate insulin modulatory effects on voltage-activated potassium currents in a neuronal cell line with origin in the sympathetic system, we performed whole-cell voltage-clamp recordings in differentiated N1E-115 neuroblastoma cells. Two(More)
The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is(More)
The hippocampal CA3 area contains large amounts of vesicular zinc in the mossy fiber terminals which is released during synaptic activity, depending on presynaptic calcium. Another characteristic of these synapses is the presynaptic localization of high concentrations of group II metabotropic glutamate receptors, specifically activated by DCG-IV. Previous(More)
Zinc, a transition metal existing in very high concentrations in the hippocampal mossy fibers from CA3 area, is assumed to be co-released with glutamate and to have a neuromodulatory role at the corresponding synapses. The synaptic action of zinc is determined both by the spatiotemporal characteristics of the zinc release process and by the kinetics of zinc(More)
The hippocampal mossy fibers contain a substantial quantity of loosely-bound zinc in their glutamatergic presynaptic vesicles, which is released in synaptic transmission processes. Despite the large number of studies about this issue, the zinc changes related to short and long-term forms of potentiation are not totally understood. This work focus on zinc(More)
  • 1