J-C Chanteloup

  • Citations Per Year
Learn More
Wave-front correction and focal spot improvement of femtosecond laser beams have been achieved, for the first time to our knowledge, with a deformable mirror with an on-line single-shot three-wave lateral shearing interferometer diagnostic. Wave-front distortions of a 100-fs laser that are due to third-order nonlinear effects have been compensated for. This(More)
Multiple-wave achromatic interferometric techniques are used to measure, with high accuracy and high transverse resolution, wave fronts of polychromatic light sources. The wave fronts to be measured are replicated by a diffraction grating into several copies interfering together, leading to an interference pattern. A CCD detector located in the vicinity of(More)
We demonstrate correction of laser wave-front distortions by use of an adaptive-optical technique based on a light valve. The setup consists of an achromatic and adjustable-sensitivity wave-front sensor and a wave-front corrector relying on an optically addressed liquid-crystal spatial light modulator. Experimental results with strongly aberrated beams(More)
We have developed a high-resolution programmable adaptive-optic device based on an optically addressed liquid-crystal electro-optic valve controlled by an achromatic three-wave lateral shearing interferometer. We apply this phase-only filter and loop to shape the far-field pattern of laser beams. As a first application, we theoretically compute and(More)
Coherent beam combining in the femtosecond regime of a record number of 19 fibers is demonstrated. The interferometric phase measurement technique, particularly well suited to phase-lock a very large number of fibers, is successfully demonstrated in the femtosecond regime. A servo loop is implemented to control piezoelectric fiber stretchers for both phase(More)
A simple new three-wave interferometric technique is used to measure, for what is believed to be the first time, the wave front of femtosecond ultrahigh-peak-power pulses carrying a strong B integral (B = 5.26+/-0.15) in a single shot. Wave-front distortions of a terawatt-class laser system are measured with good accuracy (lambda/50) and discussed. These(More)
  • 1