J A Zasadzinski

Learn More
Surfactant protein B (SP-B) is essential for normal lung surfactant function. Theoretical models predict that the disulfide cross-linked, N- and C-terminal domains of SP-B fold as charged amphipathic helices, and suggest that these adjacent helices participate in critical surfactant activities. This hypothesis is tested using a disulfide-linked construct(More)
Langmuir isotherms, fluorescence microscopy, and atomic force microscopy were used to study lung surfactant specific proteins SP-B and SP-C in monolayers of dipalmitoylphosphatidylglycerol (DPPG) and palmitoyloleoylphosphatidylglycerol (POPG), which are representative of the anionic lipids in native and replacement lung surfactants. Both SP-B and SP-C(More)
Synthetic peptides based on the N-terminal domain of human surfactant protein B (SP-B1-25; 25 amino acid residues; NH2-FPIPLPYCWLCRALIKRIQAMIPKG) retain important lung activities of the full-length, 79-residue protein. Here, we used physical techniques to examine the secondary conformation of SP-B1-25 in aqueous, lipid and structure-promoting environments.(More)
Both human lung surfactant protein, SP-B, and its amino-terminal peptide, SP-B1-25, inhibit the formation of condensed phases in monolayers of palmitic acid, resulting in a new fluid phase. This fluid phase forms a network, separating condensed-phase domains at coexistence. The network persists to high surface pressures, altering the nucleation, growth, and(More)
The minimum surface tension and respreadability of a surfactant monolayer is limited by a two to three dimensional instability called collapse. Liquid-condensed or solid phase monolayers collapse via fracture followed by loss of material. Liquid-expanded phase monolayers collapse by solubilization into the subphase. Monolayers that retain a continuous(More)
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on(More)
Although the effects of surfactant protein B (SP-B) on lipid surface activity in vitro and in vivo are well known, the relationship between molecular structure and function is still not fully understood. To further characterize protein structure-activity correlations, we have used physical techniques to study conformation, orientation, and molecular(More)
Mammalian lung surfactant is a mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C, and SP-D). Its major function is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film highly enriched in dipalmitoyl phosphatidylcholine (DPPC), thereby preventing alveolar(More)
Endogenous lung surfactant, and lung surfactant replacements used to treat respiratory distress syndrome, can be inactivated during lung edema, most likely by serum proteins. Serum albumin shows a concentration-dependent surface pressure that can exceed the respreading pressure of collapsed monolayers in vitro. Under these conditions, the collapsed(More)
Developing synthetic lung surfactants to replace animal extracts requires a fundamental understanding of the roles of the various lipids and proteins in native lung surfactant. We used Brewster angle microscopy (BAM), atomic force microscopy (AFM), and Langmuir isotherms to study the influence of palmitoyloleoylphosphatidylglycerol (POPG) in monolayers of(More)