Learn More
Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) provides a way of localizing genes that cause disease, in admixed ethnic groups such as African Americans, with approximately 100 times fewer markers than are required for whole-genome haplotype scans. However, it has not been possible to perform powerful scans with(More)
We performed a three-phase genome-wide association study (GWAS) using cases and controls from a genetically isolated population, Ashkenazi Jews (AJ), to identify loci associated with breast cancer risk. In the first phase, we compared allele frequencies of 150,080 SNPs in 249 high-risk, BRCA1/2 mutation-negative AJ familial cases and 299 cancer-free AJ(More)
Polyadenylated RNAs of certain human tumour cell lines are shown to contain transcripts related to the cell-derived transforming onc genes of molecularly cloned primate, murine or avian transforming retrovirus genomes. Thus, analogues of retroviral transforming genes are both present and frequently expressed in human neoplastic cells.
Population linkage disequilibrium occurs as a consequence of mutation, selection, genetic drift, and population substructure produced by admixture of genetically distinct ethnic populations. African American and Hispanic ethnic groups have a history of significant gene flow among parent groups, which can be of value in affecting genome scans for(More)
Scientists, to understand the importance of allelic polymorphisms on phenotypes that are quantitative and environmentally interacting, are now turning to population-association screens, especially in instances in which pedigree analysis is difficult. Because association screens require linkage disequilibrium between markers and disease loci, maximizing the(More)
Total cellular poly(A)-enriched RNA from a variety of fresh human leukemic blood cells and hematopoietic cell lines was analyzed for homology with molecularly cloned DNA probes containing the onc sequence of Abelson murine leukemia virus (Ab-MuLV), Harvey murine sarcoma virus (Ha-MuSV), simian sarcoma virus (SSV), and avian myelocytomatosis virus strain(More)
Endothelial cell biology has recently been the subject of considerable interest in thrombosis and cancer research. However, the successful establishment of immortalized human endothelial cells which retain differentiated cell characteristics has been rare. We have successfully established immortalized human umbilical vein endothelial cells (HUVECs) by human(More)
Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, we have sequenced human ets-1 cDNAs and(More)
Nef is a membrane-associated cytoplasmic phosphoprotein that is well conserved among the different human (HIV-1 and HIV-2) and simian immunodeficiency viruses and has important roles in down-regulating the CD4 receptor and modulating T-cell signaling pathways. The ability to modulate T-cell signaling pathways suggests that Nef may physically interact with(More)
Although strong evidence is mounting that telomerase reactivation and the thereof resulting stabilization of telomeres is a major mechanism for human cells to overcome replicative senescence, a causal relationship linking telomerase activation conclusively to tumorigenesis remains to be established. Thus, the possibility exists that telomerase activation is(More)