Learn More
Electroporation, the transient increase in the permeability of cell membranes when exposed to a high electric field, is an established in vitro technique and is used to introduce DNA or other molecules into cells. When the trans-membrane voltage induced by an external electric field exceeds a certain threshold (normally 0.2-1 V), a rearrangement of the(More)
We present a generalized discontinuous Galerkin method for a mul-ticomponent compressible barotropic Navier-Stokes system of equations. The system presented has a functional viscosity ν which depends on the pressure p = p(ρ, µi) of the flow, with the density ρ and the local concentration µi. High order Runge-Kutta time discretization techniques are(More)
We present a solution to the conservation form (Eulerian form) of the quantum hydrodynamic equations which arise in chemical dynamics by implementing a mixed/discontinuous Galerkin (MDG) finite element numerical scheme. We show that this methodology is stable, showing good accuracy and a remarkable scale invariance in its solution space. In addition the MDG(More)
We present a class of chemical reactor systems, modeled numerically using a fractional multistep method between the reacting and diffusing modes of the system, subsequently allowing one to utilize algebraic techniques for the resulting reactive subsystems. A mixed form discontinuous Galerkin method is presented with implicit and explicit (IMEX) timestepping(More)
Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival(More)
A new discontinuous Galerkin (DG) method is introduced that seamlessly merges exact geometry with high-order solution accuracy while exactly preserving both. This new method is called the blended isogeometric discontinuous Galerkin (BIDG) method. The BIDG method contrasts with existing high-order accurate DG methods over curvilinear meshes (e.g. classical(More)
  • 1