Learn More
Functional interpretation of candidate gene lists is an essential task in modern biomedical research. Here, we present the 2011 update of g:Profiler (http://biit.cs.ut.ee/gprofiler/), a popular collection of web tools for functional analysis. g:GOSt and g:Cocoa combine comprehensive methods for interpreting gene lists, ordered lists and list collections in(More)
Large-scale cancer genome sequencing has uncovered thousands of gene mutations, but distinguishing tumor driver genes from functionally neutral passenger mutations is a major challenge. We analyzed 800 cancer genomes of eight types to find single-nucleotide variants (SNVs) that precisely target phosphorylation machinery, important in cancer development and(More)
We present a web resource MEM (Multi-Experiment Matrix) for gene expression similarity searches across many datasets. MEM features large collections of microarray datasets and utilizes rank aggregation to merge information from different datasets into a single global ordering with simultaneous statistical significance estimation. Unique features of MEM(More)
Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae.(More)
g:Profiler (http://biit.cs.ut.ee/gprofiler/) is a public web server for characterising and manipulating gene lists resulting from mining high-throughput genomic data. g:Profiler has a simple, user-friendly web interface with powerful visualisation for capturing Gene Ontology (GO), pathway, or transcription factor binding site enrichments down to individual(More)
With the ability to fully sequence tumor genomes/exomes, the quest for cancer driver genes can now be undertaken in an unbiased manner. However, obtaining a complete catalog of cancer genes is difficult due to the heterogeneous molecular nature of the disease and the limitations of available computational methods. Here we show that the combination of(More)
Deciphering heterogeneous cellular networks with embedded modules is a great challenge of current systems biology. Experimental and computational studies construct complex networks of molecules that describe various aspects of the cell such as transcriptional regulation, protein interactions and metabolism. Groups of interacting genes and proteins reflect(More)
Somatic mutations in cancer genomes include drivers that provide selective advantages to tumor cells and passengers present due to genome instability. Discovery of pan-cancer drivers will help characterize biological systems important in multiple cancers and lead to development of better therapies. Driver genes are most often identified by their recurrent(More)
Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse(More)
MOTIVATION Gene expression analysis with microarrays has become one of the most widely used high-throughput methods for gathering genome-wide functional data. Emerging -omics fields such as proteomics and interactomics introduce new information sources. With the rise of systems biology, researchers need to concentrate on entire complex pathways that guide(More)