Jürgen Schmidhuber

Learn More
Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the(More)
Many real-world sequence learning tasks require the prediction of sequences of labels from noisy, unsegmented input data. In speech recognition, for example, an acoustic signal is transcribed into words or sub-word units. Recurrent neural networks (RNNs) are powerful sequence learners that would seem well suited to such tasks. However, because they require(More)
Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible, wide and deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth,(More)
Long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) can solve numerous tasks not solvable by previous learning algorithms for recurrent neural networks (RNNs). We identify a weakness of LSTM networks processing continual input streams that are not a priori segmented into subsequences with explicitly marked ends at which the network's internal(More)
In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional(More)
We show in this paper how several proposed Physical Unclonable Functions (PUFs) can be broken by numerical modeling attacks. Given a set of challenge-response pairs (CRPs) of a PUF, our attacks construct a computer algorithm which behaves indistinguishably from the original PUF on almost all CRPs. This algorithm can subsequently impersonate the PUF, and can(More)
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of(More)
We address a central problem of neuroanatomy, namely, the automatic segmentation of neuronal structures depicted in stacks of electron microscopy (EM) images. This is necessary to efficiently map 3D brain structure and connectivity. To segment biological neuron membranes, we use a special type of deep artificial neural network as a pixel classifier. The(More)